即射頻識別(Radio Frequency Identification,RFID),是一種非接觸式的自動識別技術,通過無線射頻方式進行非接觸雙向數(shù)據(jù)通信,對目標加以識別并獲取相關數(shù)據(jù),具有成本低、定位精度高的優(yōu)點。有源RFID定位系統(tǒng)已被廣泛應用于各種定位場景。天線是RFID系統(tǒng)的重要組成部分,在眾多場景中均制約著RFID技術的發(fā)展,所以對于RFID天線的研究和設計十分迫切。當前RFID系統(tǒng)的應用主要集中在低頻、高頻、超高頻和微波頻段,且在這些頻段上的天線設計研究有較大不同。本文系統(tǒng)設計采用超高頻段進行通信,目前在UHF頻段多采用偶極子及其變形結構,如彎折線天線、折合偶極子天線等。文中設計了超高頻段433 MHz的標簽小型化天線,需同時滿足標簽小型化和天線性能兩方面的要求。
1 標簽天線設計思想
1.1 標簽天線輻射增益確定
天線增益用G來表示,定義為:在輸入功率相同的條件下,天線在大輻射方向上某一點的功率通量密度與相點源天線在同一點處的功率通量密度之比。
標簽天線發(fā)射信號,讀寫器天線接收信號。對應式(1)中,Pth為讀寫器射頻芯片規(guī)定的天線小接收功率,-110 dBm·W;Pt為標簽射頻電路芯片規(guī)定的天線發(fā)射功率,可調(diào),-20~3 dBm·W;Gt為要設計的標簽天線增益;GT為已有讀寫器天線增益,3 dBi;λ為工作波長;r為標簽與讀寫器之間工作距離設計目標,50 m;工作頻率為433MHz。RFID系統(tǒng)中讀寫器天線為圓極化天線,標簽天線為線極化天線,二者會產(chǎn)生3 dB的極化失配損失。根據(jù)計算公式和實際場景綜合考慮,后確定標簽天線增益為-19 dB,可滿足應用需求。
1.2 標簽天線阻抗匹配
標簽天線面積設計目標是半徑為14 mm的半圓區(qū)域。433 MHz的標簽天線由于波長較長,所以在規(guī)定的面積內(nèi)采用彎折線的天線結構。彎折線天線中彎折次數(shù)、彎折角、彎折高度以及彎折線寬均在較大程度上影響了天線的諧振特性。在不改變天線外形尺寸的條件下,隨著彎折次數(shù)的增加,彎折線天線的諧振頻率、諧振阻抗下降,但是下降的趨勢漸緩,之后當繼續(xù)增加彎折次數(shù)時,天線的諧振頻率基本不變。同樣在天線外尺寸不變的條件下,改變彎折高度和彎折角,得到的結果類似,均為開始時隨著彎折高度和彎折角的增加,天線諧振頻率和阻抗明顯下降,之后趨勢漸緩,后基本不變。鑒于天線面積較小,在有限的區(qū)域內(nèi)使用彎折線結構無法達到433 MHz的諧振頻率,所以設計時需要增加相應的匹配電路進行調(diào)諧。
此外,電子標簽電路板設計中射頻電路與饋線、饋線與天線之間的阻抗要達到共軛匹配,天線才能獲得大的功率傳輸,輻射大的能量。當射頻電路與天線阻抗失配時,射頻電路的能量將不能全部由天線輻射發(fā)出,而且這部分的能量會反射回射頻電路,產(chǎn)生駐波,對電路產(chǎn)生較大損害。所以為了使信號和能量有效傳輸,必須使電路工作在阻抗匹配狀態(tài),即與天線連接的芯片阻抗必須和天線阻抗共軛匹配。將芯片阻抗調(diào)至50 Ω,天線的輸入阻抗調(diào)為50 Ω,從而實現(xiàn)阻抗匹配。