控制訊號為無線充電系統(tǒng)基礎(chǔ) 在電磁感應(yīng)式無線電力系統(tǒng)中,于受電端所需能量大小或開啟或關(guān)閉充電功能會(huì)隨受電裝置使用狀況而改變。對應(yīng)其供電端線圈上可以透過不同調(diào)節(jié)能量大小之設(shè)計(jì)進(jìn)行發(fā)送能量以進(jìn)行搭配。由于受電端與供電端并沒有實(shí)體連接,但功能上供電端又須要得知受電端狀態(tài)以從事功率調(diào)節(jié),因此為完成受電端傳送控制訊號到供電端再經(jīng)解析后進(jìn)行控制形成一個(gè)控制回路,無線通訊成為無線充電系統(tǒng)必備之功能。電磁感應(yīng)式無線充電架構(gòu)為供電端發(fā)射電磁能量即載波訊號,受電端在接收電磁能量的同時(shí),也對載波訊號進(jìn)行調(diào)制,將其編碼后的通訊資料反射到載波訊號之中,供電端再從供電線圈上載波訊號解析出通訊資料進(jìn)行控制,此技術(shù)為業(yè)界目普遍產(chǎn)品運(yùn)作原理,市面上眾多的Qi系列產(chǎn)品即使用此方式。 受電端將通訊資料調(diào)制到供電線圈上載波訊號中,大的優(yōu)點(diǎn)在于成本,此方式毋須額外的通訊模組且在實(shí)作通訊只須從受電端傳送到供電端,是單向傳送即可完成大部分功能需求,而大的缺點(diǎn)在于影響供電線圈上載波訊號狀態(tài),主要為受電端上負(fù)載與感應(yīng)諧振因素。 本文專門研討在無線充電供電與受電線圈之間通訊調(diào)制與解調(diào)之技術(shù),礙于篇幅有限,關(guān)于無線充電其他原理就不再詳細(xì)說明。 供電線圈的載波特性限制 頻率低/訊號高電壓不利通訊 有別于一般專門為通訊設(shè)計(jì)使用的天線,無線充電是以電力傳送為主要目標(biāo)的線圈設(shè)計(jì)后,再因功能需求在其上進(jìn)行通訊功能開發(fā)。 在電磁感應(yīng)式無線充電中供電線圈上訊號的特性為:頻率偏低并且不固定、訊號高電壓并具有電流驅(qū)動(dòng)力,而此兩種特性都不利于通訊方面的用途。 電磁感應(yīng)式所使用的頻率約在100~300kHz之間,相對于其他通訊技術(shù)該頻率是非常低的,調(diào)制資料鮑率為求可靠,通常要遠(yuǎn)低于主載波頻率,加上本通訊技術(shù)之載波只為供電端提供頻率,受電端只能透過振幅調(diào)變(AM)進(jìn)行調(diào)制,再加上電力傳送本身功率大小是透過改變頻率方式,進(jìn)而調(diào)節(jié)線圈上諧振之振幅完成提高或降低功率輸出之功能,所以主載波頻率不固定再加上振幅變動(dòng)大的狀況下,其供電端訊號解析所須濾波器的設(shè)計(jì)變得困難。 另外,要在供電線圈上提高功率,線圈電壓須推到100V以上,且線圈上的電流具有相當(dāng)大的電流推力,才能將能量推送到受電端線圈上,因?yàn)楣╇娋圈上增加功率后提高電壓與大電流的狀況下,受電端要在其上再調(diào)制訊號困難度也提高,在調(diào)制原理來看受電端須改變受電線圈上的阻抗進(jìn)行反射到供電線圈上影響其訊號振幅,阻抗改變越大,反射后的振幅改變越大,其訊號也越容易辨識(shí)。 但實(shí)作上并非如此理想,為了提高功率之送電效率,供電線圈使用低阻抗導(dǎo)線與低電感量配置,在其線圈上電流驅(qū)動(dòng)力相當(dāng)強(qiáng)勁,即使受電端負(fù)載改變,依然能提供相當(dāng)?shù)挠嵦栒穹跃S持推力,此設(shè)定造成受電端要在載波上進(jìn)行訊號調(diào)制變得更困難,也就是光靠改變線圈上的阻抗無法有效反射到供電線圈上的載波形成明顯改變,載波振幅上的調(diào)制深度不足,其訊號解析變得困難。 再者,供電線圈上的訊號本身帶有很大雜訊,雜訊來源相當(dāng)復(fù)雜,其主要為供電端本身諧振之訊號抖動(dòng)外,還有受電端負(fù)載反應(yīng)所造成,所以反射到供電線圈調(diào)制訊號須遠(yuǎn)大于其雜訊,才有可能被解析后進(jìn)行解碼。在此說明受電端調(diào)制訊號與供電端解調(diào)訊號兩方面都有技術(shù)挑戰(zhàn)須克服,受電端須產(chǎn)生明確的調(diào)制訊號;供電端也須有能力在線圈高電壓諧振訊號中取出解調(diào)方法。 中功率受電端改良方法:新型錯(cuò)動(dòng)式調(diào)制技術(shù) 前述所提要達(dá)到從受電端線圈反射通訊資料到供電線圈,須透過調(diào)制技術(shù)改變受電線圈上的阻抗方能完成,而改變調(diào)阻抗的方法在過去的常識(shí)中,為采用開關(guān)元件外加負(fù)載于調(diào)制期間加大其線圈上的負(fù)載效應(yīng)用于反射。 這樣的方式在功率加大后會(huì)遇到瓶頸,當(dāng)受電端后端負(fù)載很大的狀況下其受電線圈等效負(fù)載電阻已經(jīng)很低,若為調(diào)制訊號再加大負(fù)載其接近于將線圈短路,如此操作會(huì)增加功率損耗與易燒毀元件的問題,再者此方式調(diào)制訊號于線圈兩端同時(shí)加以負(fù)載的方式等于與供電端硬碰硬,強(qiáng)力反射到供電圈的訊號在大功率下調(diào)制深度也不容易提高。 在此提出一個(gè)改良式的調(diào)制方法,其有兩個(gè)重點(diǎn)。其一為調(diào)制訊號并非單在線圈上加重負(fù)載,調(diào)制的目標(biāo)在于線圈阻抗的改變,所以反向降低線圈阻抗也是可以達(dá)到調(diào)制之目的。其二為調(diào)制訊號并非一定要同時(shí)同線圈兩端進(jìn)行調(diào)制,可在線圈兩端進(jìn)行交替式的調(diào)制,使其受電端反射訊號到供電端線圈上的諧振進(jìn)行交替互動(dòng),避免在大功率下硬碰調(diào)制的技術(shù),可以有效加大調(diào)制深度。 參考圖1為一實(shí)作電路圖,接收線圈(Coil)感應(yīng)到電磁能量串接C1諧振電容連接到后端整流電路,其端點(diǎn)S1與S2為反相訊號,實(shí)作上從整流器看S1與S2為交替拉扯電壓訊號,在有負(fù)載的狀況下S1與S2波型接近于反相方波。而整流器設(shè)計(jì)為全橋式結(jié)構(gòu)與傳統(tǒng)四個(gè)二極體整流器略有些不同,其上端維持D1與D2兩個(gè)二極體當(dāng)S1與S2為高電位時(shí)將電流帶往,而下端有別于一般整流器改成兩個(gè)開關(guān)元件,其動(dòng)作為當(dāng)S1或S2為低電位時(shí),其連接的開關(guān)元件Q13或Q23為導(dǎo)通狀態(tài),使后端負(fù)載之接地電流可通往線圈。 圖1 受電端模組 以下整流器動(dòng)作原理舉其中一端進(jìn)行說明,兩端為對稱結(jié)構(gòu)故為反相運(yùn)作。當(dāng)S1由高電位切到低電位,反之S2會(huì)從低電位切到高電位,此時(shí)動(dòng)作應(yīng)該Q13要進(jìn)入導(dǎo)通,另外Q23要開路,在過去常識(shí)中此電路稱為半橋同步整流,Q13與Q23互相透過對相訊號進(jìn)行開關(guān)。 圖1中為改良電路能提高其切換性能,以Q12與Q22簡易搭配出加速電路。以Q12來說明,當(dāng)S1為高電位時(shí)Q12會(huì)進(jìn)入導(dǎo)通而上端S12會(huì)被下拉到低電位,而R121會(huì)消耗掉一些電流,但因?yàn)樽柚荡笏該p耗不多。
|