電池補充供電模式
基于輸入電流或者輸入電壓的DPM可在電源不崩潰的情況下從適配器獲得大功率。對于一些便攜式設備而言,例如:智能電話和平板電腦等,系統(tǒng)負載通常是動態(tài)的,并且有高脈沖電流。即使是充電電流已降至零,如果出現脈沖電流的系統(tǒng)的峰值功率高于輸入功率怎么辦?如果不主動控制,則輸入功率電源可能會崩潰。
一種解決方案是,增加適配器的額定功率,但這會增加適配器的體積和成本。另一種解決方案是,開啟MOSFET Q4對電池放電而非充電,從而暫時性地為系統(tǒng)提供更多的功率。組合運用DPM控制和電池補充供電模式,可優(yōu)化適配器,以提供平均功率而非大峰值系統(tǒng)功率,從而降低成本,并實現小的解決方案尺寸。
提高系統(tǒng)性能設計考慮
如平板電腦和智能電話等便攜式設備,均要求實現瞬時開機功能,從而提供良好的用戶體驗。這就意味著,不管電池是完全充電還是深度放電,插入適配器時系統(tǒng)都要瞬時開啟。
例如,我們假設,系統(tǒng)使用一塊單節(jié)鋰離子電池,如圖1和2所示。如果在沒有MOSFET Q4的情況下,電池直接連接至系統(tǒng),則系統(tǒng)總線電壓(VBUS)與電池電壓一樣。電壓小于3V的一塊深度放電電池,可能會阻止系統(tǒng)開啟。用戶可能不得不等待電池充電至3.4V以后才能開啟系統(tǒng)。為了支持瞬時開啟功能,我們添加了MOSFET Q4,以便工作在線性模式下,實現對深度放電電池充電的同時維持小系統(tǒng)工作電壓。小系統(tǒng)電壓通過開關式轉換器調節(jié),而Q4的充電電流則通過一個線性控制環(huán)路來調節(jié)。一旦電池電壓達到小系統(tǒng)電壓,MOSFET Q4便完全開啟。它的充電電流通過同步降壓轉換器的占空比來調節(jié)。所以,系統(tǒng)電壓始終維持在小系統(tǒng)工作電壓和大電池電壓之間,以為系統(tǒng)供電。
在一個5V的USB充電系統(tǒng)中,電源和電池之間的所有串行電阻都會影響充電效率。充電通路的電阻由FET Q1、Q2及Q4的“導通”電阻以及USB線纜約250 mΩ的電阻共同組成。如果線纜電壓下降,充電器輸入電壓很少能達到4.5V。因此,設計一種FET“導通”電阻低的充電器,可以小化充電時間,這一點至關重要。圖3比較了使用 TI bq24190 USB/適配器充電器設計和80 mΩ充電通路額外電阻替代設計的充電時間。我們可以看到,相比另一種設計,由于輸入電壓達到4.5V,bq24190設計的充電時間縮短了20%。
延遲電池使用時間
當然,電池容量越高,電池使用時間也就越長。對于一個單電池供電的系統(tǒng)而言,通常要求3.3V的輸出電壓,其典型小系統(tǒng)電壓為3.4V左右。如果MOSFET Q4的“導通”電阻為50 mΩ,并且電池放電電流為3A,則電池截止電壓為3.55V。這就意味著,超過15%的電池容量并未得到利用。為了大化電池使用時間,MOSFET Q4的“導通”電阻必須盡可能地小。例如,“導通”電阻為10 mΩ,并且峰值電池放電電流同樣為3A,則電池截止電壓為3.43V。相比50 mΩ的“導通”電阻,它所提供的電池電量多10%。
圖4顯示了一個使用集成MOSFET的高效、單電池I2C充電器舉例。這種充電器同時支持USB和AC適配器輸入,適用于平板電腦和便攜式媒體設備。集成了所有4個功率MOSFET,同時MOSFET Q1和Q4用于檢測輸入電流和電池充電電流,從而進一步小化系統(tǒng)的解決方案尺寸。這種充電器還可區(qū)分USB端口和適配器,以快速設置正確的輸入電流限制。另外,充電器可以單獨工作(即使在系統(tǒng)關閉的情況下),擁有內部默認充電電流、充電電壓、安全計時器和輸入電流限制。這種充電器還具有USB On-the-Go(OTG)功能,其工作在增壓模式下,通過電池在USB輸入端提供5V、1.3A輸出。
散熱性能
對于那些具有超薄外形的便攜式設備而言,散熱性能至關重要,因為用戶可以很容易地感覺到來自印刷電路板的發(fā)熱情況。這種熱是由一些高功耗組件所產生,例如:電池充電器等。要想解決這個問題,使用高效的充電器和良好的電路板布局非常重要。為了進一步提高散熱性能,bq2419x系列產品內部使用了一個熱調節(jié)環(huán)路。它通過在器件達到預設結點溫度時降低充電電流,來控制大結點溫度。圖5顯示了bq24190設計的測得電池充電效率。使用5V USB輸入時,它的效率可高達94%。9V輸入和4A充電電流時,溫升僅32°C。